Email updates

Keep up to date with the latest news and content from Pediatric Rheumatology and BioMed Central.

This article is part of the supplement: 2011 Pediatric Rheumatology Symposium: Abstracts

Open Access Poster presentation

Cartilage-protective effects of C-type natriuretic peptide over expression in K/BxN TCR arthritis model

Hulya Bukulmez4*, Cynthia F Bartels1, Kabita Nanda3, Tariq M Haqqi2 and Jean F Welter1

  • * Corresponding author: Hulya Bukulmez

Author Affiliations

1 Case Western Reserve University, Cleveland, OH, USA

2 MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA

3 Rainbow Babies and Children, Cleveland, OH, USA

4 Skeletal Research Center and MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA

For all author emails, please log on.

Pediatric Rheumatology 2012, 10(Suppl 1):A109  doi:10.1186/1546-0096-10-S1-A109


The electronic version of this article is the complete one and can be found online at: http://www.ped-rheum.com/content/10/S1/A109


Published:13 July 2012

© 2012 Bukulmez et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose

The c-type natriuretic peptide (CNP) signaling pathway is known as a major contributor to skeletal growth in children. CNP is produced and secreted by both growth plate and joint chondrocytes, and has a paracrine regulatory effect on cartilage tissue. CNP increases matrix production by chondrocytes and promotes their proliferation. In this study, we investigated whether over-expression of CNP in chondrocytes would be protective of joint cartilage degradation during chronic inflammatory arthritis in vivo.

Methods

We first developed transgenic mice that over-express CNP (CNPcol2a1TG) in chondrocytes under the control of the collagen 2a1 promoter and enhancer. Then, we obtained K/BxN TCR transgenic mice from a collaborator and analyzed both transgenic mice for their joint cartilage clinical and histologic findings over time. We crossed CNPcol2a1TG mouse with K/BxN TCR transgenic mouse to produce mice with both K/BxN TCR and CNPcol2a1TG backgrounds. The degree of arthritis and cartilage damage in the offspring was analyzed using a clinical scoring system and two histological scoring systems. Differences between the scores were analyzed using the Student’s t-test.

Results

Mice that carried the transgene for both CNPcol2a1TG and K/BxN TCR showed less severe clinical and histologic arthritis findings in the joint cartilage compared to wild type littermates. Between the ages of 6-14 weeks, the average arthritis score of K/BxN TCR transgenic mice that over-expressed CNP was 4.37 ±1.38 (n=8), while the average arthritis score of K/BxN TCR arthritic mice of the same age was 8.66 ±3.26 (n=14), (p<0.05). Histological staining and morphometry did not show any evidence of cartilage degradation in the joint cartilage of CNPcol2a1TG mice. The knee and ankle cartilage of CNPcol2a1TG mice was thick and showed increased proteoglycan content by Safranin-O staining. However, the double-transgenic offspring mice (K/BxN/CNPcol2a1TG) developed less cartilage damage and less chondrocyte disorganization while still developing inflammatory changes (pannus) in the synovium, similar to the K/BxN TCR mice. We adapted the ICRS histological scoring system and gave scores to the knee joint cartilage of the 8-week-old male mice. K/BxN mice (n=7) scored significantly lower for both chondrocytic cell distribution (III) and chondrocyte matrix content (II) (p<0.001 and p<0.05, respectively) than the (K/BxN/ CNPcol2a1TG mice (n=12).

Conclusion

K/BxN TCR arthritic mice over-expressing CNP did not have joint cartilage damage due to chronic inflammation. We conclude that excess paracrine production of CNP in the joint cartilage of double-transgenic K/BxN/CNPcol2a1TG arthritic mice was able to overcome the effects of pro-inflammatory cytokines on joint cartilage in vivo. CNP and the effector molecules of CNP signaling pathway may have therapeutic potential in protecting cartilage homeostasis during chronic inflammatory arthritis.

Disclosure

Hulya Bukulmez: None; Cynthia F. Bartels: None; Kabita Nanda: None; Tariq M. Haqqi: None; Jean F. Welter: None.